Integrating Information within a Balanced Assessment System

Nathan Dadey, Center for Assessment

Symposium on Learning-Focused Balanced Assessment Systems Presented at CCSSO's National Conference on Student Assessment June 28th, 2017

A simple premise:

All of data produced by a balanced assessment system should be use to characterize student learning.

That is, if the *design* of a system is balanced, shouldn't the *analysis* be balanced too?

This sounds great, in theory, but is difficult in practice.

In large part, because of the power boundaries briefly touch upon in Joseph's presentation.

However, overcoming these types of barriers is important – otherwise we are leaving a lot of information on the table.

Assessments Given in a Year

Purpose

- Illustrate that examining data from two levels (state & district) can be powerful providing insight that is, potentially, instructionally relevant,
- By investigating district data assessment data of sixth grade mathematics data from three "modular" interims and a summative assessment.
- In the context of two uses outlined previously:
 - 1. Differentiating Instruction
 - 2. Auditing Grades

The Data

Sixth Grade Mathematics

Year

Start of

Year

- 3 interims with 30 items each & end-of-year summative (approx. 50 items)
- Interim items generally aligned to instruction in prior quarter ("modular" design)
- Approximately 5,000 students

1. Differentiating Instruction

Intended	Purposes	and	Uses

of the District Assessment System

- # Priority Description
- 1 mid Audit District Assessment Results
- 2 mid Audit Teacher/School-Assigned Marking Period Grades
- 3 high Differentiate Instruction

mid Evaluate Achievement for Traditional Grading

Specifically, by **predicting proficiency classifications** on the summative assessment with interim assessment performance.

2	mu		1
10	low	Measure Educator/Institution Effect on Student Growth	

1. Analysis & Results

- Used regression trees to find interactions of multiple variables that best predicted performance, then used those results to produce simple descriptive statistics.
- Findings
 - Students who scored 16 and above on the second interim (I2) were very likely to be proficient (91%)
 - Relationships for not passing were slightly more complex, e.g.,
 - Students with I2 < 16 were likely to not be proficient (84%)
 - Students with I2 < 16 & I3 < 16 were very likely to not be proficient (0.92%)...

1. Results, Cont.

- So is the second interim important because of timing, content, or both?
 - Such information would need to be solicited empirically.
- However, the interims highly correlate, indicating that interim 1 or 3 could easily also be used to identify students based on a cutscore.

1. Caveats

- Prediction relationships may not:
 - transfer from cohort to cohort.
 - hold if educators act on them.
- Prediction \neq learning.

2. Auditing Grades

Intended	Purposes	and Uses
----------	----------	----------

of the District Assessment System

- # Priority Description
 - 1 mid Audit District Assessment Results

2 mid Audit Teacher/School-Assigned Marking Period Grades

high Differentiate Instruction

Specifically, by **comparing proficiency classifications** on the summative assessment

with teacher grades.

9	mid	Instructional Unit Planning
10	low	Measure Educator/Institution Effect on Student Growth

2. Analysis & Results

• Columns sum to 100%.

	Not	
Grade	Proficient	Proficient
Α	6%	48%
В	23%	35%
С	30%	13%
D	22%	3%
F	18%	1%

2. Analysis & Results

- Columns sum to 100%.
- Implications for grading?

Grade	Not Proficient	Proficient
А	6%	48%
В	23%	35%
С	30%	13%
D	22%	3%
F	18%	1%

2. Caveats

- Begs further questions
 - Are there certain patterns of identifications that are undesirable? If so, are they grouped in schools, or perhaps can be explained by other student variables?

Conclusions

- Stop silo'ing data & start having conversations based on empirical examinations, hopefully guided by considerations of use like those in the tool put forth by Joseph.
- Wherever possible, posit hypotheses before conducting investigations.